Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences 3D-Bioprinting, Biofabrication, Organoids & Organs-on-Chips Asia 2022


Microphysiological Systems (MPS) by Designing the Interface of Epithelial and Endothelial Cells

Ryuji Yokokawa, Professor, Department of Micro Engineering, Kyoto University

Microfluidic devices have become popular in many life science fields, including stem cell research. As a microfabrication scientist, I have been proposing new assay systems as microphysiological systems (MPS). The assay systems that mimic the functions of human biological organs can be constructed on a chip to measure physiological functions that are difficult to measure on a culture dish. We have employed two approaches to create the interface between organ cells and vascular networks in MPS: a two-dimensional method in which organ cells and vascular endothelial cells are co-cultured on the top and bottom surfaces of a porous membrane coated with an extracellular matrix, such as Transwell (2D-MPS), and a three-dimensional method in which the spontaneous patterning ability of vascular endothelial cells is utilized (3D-MPS). A 2D-MPS, renal proximal tubule model, evaluates albumin and glucose reabsorption and nephrotoxicity, while the glomerular filtration barrier model evaluates inulin and albumin filtration mechanisms. I will also present recent results on the development of a co-culture system of organoids and vascular network as a 3D-MPS. Kidney and brain organoids were cultured on a vascular network to demonstrate their maturation and vascularization. The on-chip vascular network is expected to expand from basic researches including vascular biology to evaluate the correlation between shear stress and vascular morphogenesis.

Add to Calendar ▼2022-10-06 00:00:002022-10-07 00:00:00Europe/London3D-Bioprinting, Biofabrication, Organoids and Organs-on-Chips Asia 20223D-Bioprinting, Biofabrication, Organoids and Organs-on-Chips Asia 2022 in Tokyo, JapanTokyo,