Shopping Cart (0)
My Account

Shopping Cart
SELECTBIO Conferences Organoids, Spheroids & Organs-on-Chips 2024

Mandy Esch's Biography



Mandy Esch, Project Leader, National Institute of Standards and Technology (NIST)

Mandy B. Esch is a project leader in the Microsystems and Nanotechnology Division of the National Institute of Standards and Technology. She received a Diploma (equivalent to the American M.S. degree) in Biology and a Dr. rer. nat. (equivalent to the American Ph.D. degree) in Biotechnology from the Julius Maximilians University in Würzburg, Germany. During her PhD research she developed paper-based microfluidics and microfluidic biosensors for the detection of pathogens. In 2001, Dr. Esch joined the Cornell Nanoscale Science and Technology Facility as life sciences liaison. In 2007, she joined the Department of Biomedical Engineering at Cornell University as a Postdoctoral Research Associate. While there, she developed patents for cell culture on a porous 3D surface and for a multi-organ microphysiological system (MPS). She was part of the team that in 2015 received the Lush Science Prize for designing multi-organ fluidic cell culture systems. From 2015 to 2016 Dr. Esch spent a year as Assistant Professor at Syracuse University (Department of Biomedical and Chemical Engineering), where she taught nanobiotechnology. In August 2016 Dr. Esch moved to NIST, where she is focusing on integrating sensors with tissues-on-chips and multi-organ microphysiological systems.

Mandy Esch Image

Development of Pumpless Single-Organ and Multi-Organ MPS

Tuesday, 19 November 2024 at 14:30

Add to Calendar ▼2024-11-19 14:30:002024-11-19 15:30:00Europe/LondonDevelopment of Pumpless Single-Organ and Multi-Organ MPSOrganoids, Spheroids and Organs-on-Chips 2024 in Laguna Hills, CaliforniaLaguna Hills, CaliforniaSELECTBIOenquiries@selectbiosciences.com

Single and multi-organ microphysiologic systems (MPS) can be used to detect secondary drug toxicities stemming from drug metabolites. Here we describe how to design and prototype such systems to replicate key aspects of the human body that influence the concentration of drug metabolites within the system. Using 3D printing we have prototyped and tested several microfluidic MPS that operate with liver and heart tissues and that can recirculate near-physiological amounts of cell culture medium. We have also developed several devices that recirculate small amounts of cell culture medium in a way that makes it feasible to culture mechano-sensitive cells such as HUVEC or GI tract epithelial cells within the system. The talk given here is a summary of our efforts in this area.


Add to Calendar ▼2024-11-18 00:00:002024-11-20 00:00:00Europe/LondonOrganoids, Spheroids and Organs-on-Chips 2024Organoids, Spheroids and Organs-on-Chips 2024 in Laguna Hills, CaliforniaLaguna Hills, CaliforniaSELECTBIOenquiries@selectbiosciences.com