High-Resolution 3D-Printing of MicrofluidicsMonday, 1 April 2019 at 09:45 Add to Calendar ▼SELECTBIOenquiries@selectbiosciences.com The vast majority of microfluidic systems are built by replica-molding in elastomers (such as PDMS) or in thermoplastics (such as PMMA or polystyrene). However, biologists and clinicians typically do not have access to microfluidic technology because they do not have the engineering expertise or equipment required to fabricate and/or operate microfluidic devices. Furthermore, the present commercialization path for microfluidic devices is usually restricted to high-volume applications in order to recover the large investment needed to develop the plastic molding processes. Several groups, including ours, have been developing microfluidic devices through stereolithography (SL), a form of 3D printing, in order to make microfluidic technology readily available via the web to biomedical scientists. However, most available SL resins do not have all the favorable physicochemical properties of the above-named plastics (e.g., biocompatibility, transparency, elasticity, and gas permeability), so the performance of SL-printed devices is still inferior to that of equivalent PDMS devices. Inspired by the success of hydrogel PEG-DA biocompatibility, we have developed microfluidic devices by SL in advanced resins that share all the advantageous attributes of PDMS and thermoplastics so that we can 3D-print designs with comparable performance and biocompatibility to those that are presently molded. |